Refine Your Search

Search Results

Technical Paper

The Inflatable Curtain (IC) - A New Head Protection System in Side Impacts

1998-05-31
986180
Car accident investigations have shown that the head, the chest and the abdomen are the three most vulnerable body regions in side impacts, when serious-to-fatal (MAIS 3-6) injuries are considered. Injuries are much more common to occupants seated on the struck side than to those on the non-struck side. The development of new side impact protection systems has therefore been focused on struck side occupants. The first airbag system for side impact protection, jointly developed by Volvo and Autoliv, was introduced on the market in 1994. The SIPS bag is seat-mounted and protects mainly the chest and the abdomen, and also to some extent the head, since the head's lateral relative displacement is reduced by the side airbag, thereby keeping the head inside the car's outer profile. However, if an external object is exposed in the head area, for example in a truck-to-car side impact or in a single car collision into a pole or a tree, there is a need for an additional head protection device.
Technical Paper

THE WINDOWBAG: AN INNOVATION IN SIDE IMPACT PROTECTION

1998-05-31
986170
A new additional airbag system will provide enhanced protection in side impact collisions. The so - called Window Bag will be installed in some Mercedes cars beginning with the E-Class Sedan for the MY99 and in the new S - Class.
Technical Paper

Reduction of Head Rotational Motions in Side Impacts Due to the Inflatable Curtain-A Way to Bring Down the Risk of Diffuse Brain Injury

1998-05-31
986167
Diffuse brain injuries are very common in side impacts, accounting for more than half of the injuries to the head. These injuries are often sustained in less severe side impacts. An English investigation has shown that diffuse brain injuries often originate from interior contacts, most frequently with the side window. They are believed to be mainly caused by quick head rotational motions. This paper describes a test method using a Hybrid III dummy head in a wire pendulum. The head impacts a simulated side window or an inflatable device, called the Inflatable Curtain (IC), in front of the window, at different speeds, and at different impact angles. The inflated IC has a thickness of around 70 mm and an internal (over) pressure of 1.5 bar. The head was instrumented with a three axis accelerometer as well as an angular velocity sensor measuring about the vertical (z) axis. The angular acceleration was calculated.
Technical Paper

Development of a Sled-to-Sled Subsystem Side Impact Test Methodology

1997-02-24
970569
A sled-to-sled subsystem side impact test methodology has been developed by using two sleds at the WSU Bioengineering Center in order to simulate a car-to-car side impact, particularly in regards to the door velocity profile. Initially this study concentrated on tailoring door pulse to match the inner door velocity profile from FMVSS 214 full-scale dynamic side impact tests. This test device simulates a pulse quite similar to a typical door velocity of a full size car in a dynamic side impact test. Using the newly developed side impact test device three runs with a SID dummy were performed to study the effects of door padding and spacing in a real side impact situation. This paper describes the test methodology to simulate door intrusion velocity profiles in side impact and discusses SID dummy test results for different padding conditions.
Technical Paper

Sled Testing Procedure for Side Impact Airbag Development

1997-02-24
970570
Side impact crashworthiness development presents a unique challenge to auto safety engineers. One fundamental issue is how to evaluate side impact air bags with a component test that realistically simulates the kinematics of a full scale side impact crash test. This paper presents a test methodology that can be used to evaluate side impact air bags utilizing an accelerator-type sled typically used for frontal impact simulation. The approach uses a “two carriage” system, whereas the struck door and vehicle acceleration profiles are simulated. These acceleration responses are matched through a series of sled variables including thrust column setting, metering pin shape and an on-board pneumatic cylinder which controls the relative response between the two carriages.
Journal Article

Heavy Truck Stability with a Trailing Axle Tire Blowout

2012-04-16
2012-01-0238
Trailing axles, otherwise known as tag axles, are utilized in many states to allow heavy duty dump trucks and cement trucks to maximize their capacity. The trailing axle is an additional axle mounted on an arm on the rear of the truck that can be raised and lowered. When lowered, the axle extends the overall wheelbase of the vehicle and increases the total number of axles, thereby allowing for additional load to be carried without exceeding load-restriction regulations. There are multiple manufactures of trailing axles that utilize different suspension designs. One design uses an articulating axle that is mounted to the framework that lowers it. In this study, the sensitivity of this design to tire blowout on one of the trailing axle tires is studied. Testing was conducted that involved initiating a sudden air-loss event by creating a hole in the sidewall of the tire. The handling response of the vehicle was documented with on-board instrumentation and on-board and off-board video.
Journal Article

Steering and Handling Performance During a Full Tire Tread Belt Separation

2011-04-12
2011-01-0973
In this study, tests were performed with modified tires at the various front and rear positions on seventeen different vehicles to determine the effect of a full tire tread belt separation on a vehicle at highway speeds. The driver's steering and braking inputs were measured along with the vehicle responses during the event. The results show that the forces of a full tread belt separation generally do not force a vehicle out of a driver's control and that only small steering corrections are required to remain in the original lane of travel during the tread belt separation event. Additionally, forces due to the separating tires do not result in violent hop or tramp suspension responses during the separation event.
Technical Paper

Simulation Tests of Biaxial Vehicle Motion after a “Tire Blow-Out”

2005-04-11
2005-01-0410
”Tire blow-out” is a fast loss of air pressure that fills a vehicle tire, effecting from a puncture or a fatigue of tire structure. Statistical data, published in the United States, showed that “tire blow-out” caused more than 300,000 road accidents in the period of 1992–96 [1, 3]. Over 2000 people died in those accidents and many more were injured [1, 3]. The data and successful attempts of simulation presented in the work [1], prompted the author to try modeling and simulating this case of vehicle motion. The main emphasis in the hereto presented tests was put on qualitative assessment of vehicle behavior after a “tire blow-out”. The results presented in the work [1] show that the smallest motion disturbance of a vehicle takes place when the driver does not react (by turning the steering wheel or pressing the brake pedal). So, an assumption was made that the driver keeps a zero value of the steering wheel turning angle and pressure on the brake pedal.
Journal Article

A Comparison of 25 High Speed Tire Disablements Involving Full and Partial Tread Separations

2013-04-08
2013-01-0776
Tire tread separation events, a category of tire disablements, can be sub-categorized into two main types of separations. These include full tread separations, in which the tread around the entire circumference of the tire separates from the tire carcass, and partial tread separations, in which a portion of the tread separates and the flap remains attached to the tire for an extended period of time. In either case, the tire can remain inflated or lose air. Relatively, there have been few partial tire tread separation tests presented in the literature compared to full tread separation tests. In this study, the results of 25 full and partial tire tread separation tests, conducted with a variety of vehicles at highway speeds, are reported. Cases in which the tire remains inflated and loses air pressure are both considered. The testing was performed on a straight section of road and primarily focused on rear tire disablements.
Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
Technical Paper

Exhaust Aftertreatment Technologies for Hybrid Electrical Vehicles

2021-09-05
2021-24-0072
The automotive industry is undergoing a deep transformation that will shape its future for the next decades. In order to achieve the CO2 fleet average requirements, the share of electrified powertrain is rising. It is now possible to design powertrains using not only the highly efficient internal combustion engines (ICE) but also the newly developed electrical motors (eMotor) and batteries. This variety of technologies allows the design of sophisticated powertrain to better fulfill the requests not only regarding CO2 regulations but also of different markets, customer expectations and emission legislations. The increased variety of powertrains causes, on the other hand, some challenges regarding the exhaust after treatment systems (EATS) layout and emission control, considering the almost infinite possibilities to combine ICE and eMotor’s toque delivery to fulfill the customer desired drive profile.
Technical Paper

EHC Development for HEV Emission Control

2022-08-30
2022-01-1012
In the recent years and near future, the automotive environmental regulations have been and will be more stringent than ever before. The reduction of cold start tailpipe emission is the key for exhaust aftertreatment and emission control. As one of the effective catalyst heating approaches, EHC can be applied to reduce catalyst L/O time at engine cold start and then improve tailpipe emission with meeting stringent emission regulations such as China6b,Euro6d,US Tier3Bin30 and future China7,Euro7. In this paper, we will review our recent engineering work on EHC development associated with hybrid electrical vehicle for better emission control and exhaust aftertreatment.
Technical Paper

Frontal Crash Reconstruction Compared to Event Data Recorders in the Crash Investigation Sampling System Database and the Effect on Injury Risk Models

2023-07-17
2023-01-5043
This study compares statistical models for frontal crash injuries based on delta-v data reported by the vehicle event data recorder (EDR) with injury probability models based on delta-v reconstructed by Crash Investigation Sampling System (CISS) investigators. Injury probabilities and their follow-on use in advanced automatic crash notification (AACN) systems have traditionally been based on delta-v obtained through accident reconstruction of field crashes in the National Automotive Sampling System Crash Data System (NASS-CDS) database. Field delta-v from EDRs in the CISS database is an alternative source of information for crash injury probability modeling. In this study, frontal impact injury risk probabilities computed from EDR and reconstructed delta-v were compared. All data came from the years 2017–2021 of the CISS database, which contains EDR downloads and also reconstructed delta-v using crush measurements and NHTSA’s WinSmash software.
Technical Paper

The Development of a Zeolite-Based Cold-Start Catalyst (CSC) for China 6b Vehicles (Conventional & Hybrid) to Meet the Next Chinese Vehicle Emission Standard, Part II

2024-04-09
2024-01-2656
This is a follow-up report about the development of a cost-effective Palladium (Pd) zeolite-based (HC/NOx trap type) cold-start catalyst (CSC) [1] to meet the future more stringent Chinese vehicle tailpipe emission standard. The impacts of Pd /stabilizer combination within zeolite for the HC/NOx trapping efficiency, the high temperature aging and the durability of the CSCs will be demonstrated by the laboratory results within this paper. The feasibility of a Cu zeolite, a popular non-precious metal ion- zeolite CSC for vehicle applications with respect to cost saving options will be demonstrated. A more complete picture of the effects of PGM/stabilizer within the zeolite to the functions of a CSC will also be summarized in this paper. All results indicate clearly that without the PGM/stabilizer within the zeolite, it would be difficult for the zeolite-based HC/NOx trap type CSC catalyst to be practically used for a vehicle application.
Technical Paper

Evaluation of Uncoated Gasoline Particulate Filter Performance for US EPA MY27+ Particulate Mass Emissions Regulation

2024-04-09
2024-01-2383
The gasoline particulate filter (GPF) represents a practical solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as an essential technology in North America to meet the upcoming US EPA tailpipe emission regulation, as proposed in the “Multi-pollutant Rule for Model Year 2027”. The goal of this study was to introduce advanced, uncoated GPF products and measure their particulate mass (PM) reduction performance within the existing US EPA FTP vehicle testing procedures, as detailed in Code of Federal Regulations (CFR) part 1066. Various state-of-the-art GPF products were characterized for their microstructure properties with lab-bench checks for pressure drop and filtration efficiency, then pre-conditioned with an EPA-recommended 1500 mile on-road break-in, and finally were tested on an AWD vehicle chassis-dyno emissions test cell at both 25°C and -7°C ambient conditions.
Technical Paper

RDE PN Emission Challenges for a China 6 PHEV

2024-04-09
2024-01-2386
With more stringent CO2 emission regulation in the world, Plug-in Hybrid Electric Vehicle (PHEV, also known as off-vehicle charging hybrid electric vehicle, OVC-HEV) plays a more important role in the current modern market, such as in China. At the same time, Real Driving Emission (RDE) was introduced in both Euro 6d and China 6b regulation, which covers more factors in the real driving practice including altitude, environment temperature, fuel quality, driving behaviors, and so on, which could potentially impact the pollutant emissions. Besides above mentioned, for PHEV, the state of charge (SOC) of the battery is also considered as one important factor, which could impact the engine load and emissions.
Technical Paper

Next Generations of Gasoline Particulate Filters for Catalyzed Applications

2024-04-09
2024-01-2384
Gasoline particulate filters (GPF) have become a standard aftertreatment component in Europe, China, and since recently, India, where particulate emissions are based on a particle number (PN) standard. The anticipated evolution of regulations in these regions towards future EU7, CN7, and BS7 standards further enhances the needs with respect to the filtration capabilities of the GPFs used. Emission performance has to be met over a broader range in particle size, counting particles down to 10nm, and over a broader range of boundary conditions. The requirements with respect to pressure drop, aiming for as low as possible, and durability remain similar or are also enhanced further. To address these future needs new filter technologies have been developed. New technologies for uncatalyzed GPF applications have been introduced in our previous publications.
Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
Technical Paper

Study of Changes in Exhaust After-Treatment System Components in M & N Category Vehicles from the RDE Monitoring Stage to the RDE Compliance Stage

2024-01-16
2024-26-0150
Bharat Stage VI emission norms were implemented in India in two stages: Stage I from April 1, 2020, and Stage II from April 1, 2023. For M & N category vehicles, the RDE test along with other applicable certification tests is mandatory for obtaining a BSVI compliance certificate during stages I and II. The RDE test is conducted on roads under real driving conditions, unlike the Type-I test, which uses a predefined cycle on the chassis dynamometer, during which the ambient temperature and other environmental conditions are controlled in a narrow range. During BSVI Stage I for the RDE test, there was no limit for any pollutant. Therefore, it is considered as the RDE monitoring stage, and from BS-VI Stage II, limits are enforced on a few pollutants (NOX and PN) as notified in notification GSR 226(E) dated March 27, 2023. Therefore, it is considered the RDE compliance stage.
X